You are here

Contents

Title Page

Copyright

Dedication

i. Acknowledgements

ii. Preface

iii. About This Book

iv. Introduction

1. The IMRS

1.1. Shoulders of Giants

1.1.1. The International Space Station

1.1.2. Mars Analogue Research Stations

1.2. Budget

1.3. International Partnership

1.3.1. Expanding the ISS Partnership

1.3.2. Ten Partners

1.3.3. The IMRS Emblem

2. Hardware

2.1. Commercial Hardware

2.2. Rockets

2.2.1. SpaceX Falcon Rockets

2.2.2. NASA Space Launch System

2.3. SpaceX Dragon Capsule

2.4. Bigelow Aerospace B330

2.5. Hardware Development

3. The Architecture

3.1. Primary Components

3.2. Mission Overview

4. Key Features

4.1. Predeploy the Habitat; Land in a Capsule

4.1.1. Getting to the SHAB

4.2. Multiple Missions

4.3. Base-First Strategy

4.4. Manufacturing and Materials

5. Time

5.1. Duration

5.1.1. Opposition-Class Mission

5.1.2. Conjunction-Class Mission

5.1.3. Comparison

5.2. Timing

5.3. Schedule

5.4. Timekeeping

6. Crews

6.1. Crew Size

6.2. Crew Roles

6.2.1. Engineering Team

6.2.2. Science Team

6.2.3. Journalism Duties

7. Site Selection

7.1. Sunshine

7.2. Terrain

7.2.1. Low Elevation

7.2.2. Thermal Inertia

7.2.3. Surface Roughness

7.3. Water

7.4. Candidates Sites

8. Resources

8.1. Optimising Resource Usage

8.2. In Situ Resource Utilisation

8.3. Energy

8.3.1. Nuclear

8.3.2. Solar

8.3.3. Energy Storage

8.3.4. Future Options

8.3.5. Energy for Habitats

8.4. Air

8.4.1. THAB Atmosphere

8.4.2. SHAB Atmosphere

8.4.3. CAMPER Atmosphere

8.4.4. In Situ Air Production

8.5. Water

8.5.1. Space Element

8.5.2. Surface Element

8.5.3. In Situ Water Production

8.5.4. Water Strategy

8.6. Food

8.6.1. Powdered Food

8.6.2. Food Mass Estimates

8.6.3. In Situ Food Production

9. Mars Transfer Vehicle

9.1. The Transit Habitat

9.2. Reusing the MTV

9.2.1. No Place Like Home

9.2.2. Save Money

9.3. Propulsion

9.3.1. Chemical vs. Nuclear

9.3.2. LOX/LH2

9.3.3. Methalox

9.4. Shedding Mass

9.4.1. Cruise Stages

9.4.2. Drop Tanks

9.4.3. Expendable Methalox Propellant Pods

9.4.4. Food, Water and Waste

9.5. Methalox Engines

9.6. Adeona Design

9.6.1. Trip Run-Through

9.6.2. Calculations

9.7. On-Orbit Assembly

9.8. Reducing Propellant

9.9. Artificial Gravity

9.9.1. HMMs and Artificial Gravity

9.9.2. AG in Mars Direct

9.9.3. Better Living Through Chemistry (and Training)

9.9.4. Health and Fitness

9.9.5. Athena - a 12-person MTV with AG

10. Mars Ascent Vehicle

10.1. MAV Concept

10.1.1. Elements of the MAV

10.1.2. Common Descent-Ascent Stage

10.2. Entry, Descent and Landing

10.3. In Situ Propellant Production

10.3.1. Background

10.3.2. Benefits of 100% ISPP

10.3.3. ISPP Process

10.3.4. Ascent Mass Estimate

10.3.5. Ascent Propellant Estimate

10.3.6. MARCO POLO

10.4. Returning to Space

10.4.1. Ascent

10.4.2. Mars Orbit Rendezvous

11. Operational Elements

11.1. Mars Surface Habitat

11.1.1. Entry, Descent and Landing

11.1.2. Orientation

11.1.3. Initialisation

11.1.4. Redundancy and Safety

11.2. Surface Vehicles

11.2.1. Crewed Adaptable Multipurpose Pressurised Exploration Rover

11.2.2. All Terrain Vehicles

11.3. Communications

11.3.1. Between Earth and IMRS

11.3.2. Between Earth and Adeona

11.3.3. Surface Communications

11.3.4. Internet Protocols

11.4. Marssuits

11.4.1. Mechanical Counter-Pressure Suits

11.4.2. Suit Pressure

11.4.3. Suit Storage and Recharging

11.5. Airlocks

11.5.1. Minimising Dust Migration

11.5.2. Airlock Operation

12. Precursor Missions

12.1. Green Dragon

12.1.1. Entry, Descent and Landing

12.1.2. Integrated ISRU

12.2. Gold Dragon

Abbreviations

Chemical Elements

Chemical Compounds

Acronyms and Initialisms

References

Thanks